If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2-10x-15
We move all terms to the left:
0-(x^2-10x-15)=0
We add all the numbers together, and all the variables
-(x^2-10x-15)=0
We get rid of parentheses
-x^2+10x+15=0
We add all the numbers together, and all the variables
-1x^2+10x+15=0
a = -1; b = 10; c = +15;
Δ = b2-4ac
Δ = 102-4·(-1)·15
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{10}}{2*-1}=\frac{-10-4\sqrt{10}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{10}}{2*-1}=\frac{-10+4\sqrt{10}}{-2} $
| 57x-22=-47x+43-5x | | 23x+1/3A=119 | | 5q-3=17 | | 57x-22=-47+43-5x | | s-52/5=6 | | 4x/7=8/35 | | 1-d/4=-7 | | x+4=2x+10 | | 2.7+g=14 | | n/8-(-31)=32 | | 3x+5-x+1=28 | | p+3.2=7.5 | | x+(x-10)+(2x)=180 | | -2d+18—4d=60 | | 10=1/2y+11 | | 3x-53=6x-35 | | 5u^2=0 | | 7+1/5(3-4x)=0 | | -5p-8p=- | | 4K—14+3k=21 | | -5y-12=9y+16 | | 4x-2=-22/5 | | 3(2t+1)-7=t-(t+3) | | 0p-2p+4p=20p-6p | | 5/100=x/16 | | -2b+7—3b=2 | | -2x+16x=48 | | 20p-60=20(1p-30) | | 15=6t÷81 | | 9m+10—14m=-5 | | x+3.6=9.63 | | -.375x+41=-22 |